Firework Plots for Evaluating the Impact of Outliers and Influential Observations in Generalized Linear Models

نویسندگان

  • Dae-Heung Jang
  • Christine M. Anderson-Cook
چکیده

Outliers can distort many measures in data analysis and statistical modeling, and influential points can have disproportionate impact on the estimated values of model parameters. Jang and Anderson-Cook (2013) proposed a new set of graphical summaries, called firework plots, as simple tools for evaluating the impact of outliers and influential points in regression. Variations of the plots focus on allowing visualization of the impact on the estimated parameters and variability. In the generalized linear models analysis setting, the impact of changing model parameters is often less transparent than in the linear model setting and variability can be captured with the deviance. Hence, this paper describes how 3-D firework plots and the pairwise firework plot matrix can be used to increase understanding of contributions of individual observations and as a complement to other regression diagnostics techniques in the generalized linear models setting. Using these firework plots, we can find outliers and influential points and their impact on model parameters. We illustrate the information and understanding gain possible with several examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Diagnostic Measures in Ridge Regression Model with AR(1) Errors under the Stochastic Linear Restrictions

Outliers and influential observations have important effects on the regression analysis. The goal of this paper is to extend the mean-shift model for detecting outliers in case of ridge regression model in the presence of stochastic linear restrictions when the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of measures for diagnosing influential observations are ...

متن کامل

Application of Recursive Least Squares to Efficient Blunder Detection in Linear Models

In many geodetic applications a large number of observations are being measured to estimate the unknown parameters. The unbiasedness property of the estimated parameters is only ensured if there is no bias (e.g. systematic effect) or falsifying observations, which are also known as outliers. One of the most important steps towards obtaining a coherent analysis for the parameter estimation is th...

متن کامل

Regression Diagnostic Plots

In Multiple linear regression models, problems arise when serious multicollinearity or influential outliers are present in the data. Failure to include significant quadratic or cross-product terms result in model specification error. Simple scatter plots are most of the time not effective in revealing the complex relationships of predictor variables or data problems in multiple linear regressio...

متن کامل

Control chart based on residues: Is a good methodology to detect outliers?

The purpose of this article is to evaluate the application of forecasting models along with the use of residual control charts to assess production processes whose samples have autocorrelation characteristics. The main objective is to determine the efficiency of control charts for individual observations (CCIO) and exponentially weighted moving average (EWMA) charts when they are applied to res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016